Analysis in Theory and Applications 19: 4, 2003, 289— 311

MULTIFRACTAL STRUCTURE AND
PRODUCT OF MATRICES’

Lau Ka-sing
(Chinese University of Hong Kong, Hong Kong)

Received July 20, 2003
Abstract

There is a well established multifractal theory for self-similar measures generated by non-overlapping -
contractive similutudes. Qur report here concerns those with overlaps. In particular we restrict our attention
to the important classes qf self-similar measures that have matrix representations. The dimension spectra and
the Li-spectra are analyzed through the product of matrices. There are abnormal behaviors on the multifrac-

tal structure and they will be discussed in detail.
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1 Introduction

We call a family of contractive maps {S;})_, on R an iterated function system (IFS).

N

It is’well known that an IFS will generate an invariant compact subset K= {J §;K, which
j=1

we usually refer to as a fractal set. If further, we associate a set of probability weights

{w;}}_, to the IFS, then it will generate an invariant measure
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It has (Borel) support contained in K and is dense in K. The invariant sets and measures
play a central role in the theory of fractals. The above contractions are, however, too gen-
eral to yield concrete results. Therefore we often assume that the maps are similitudes (x«
is called a self-similar measure), and in the iteration process, they satisfy a nonoverlap-
ping condition called the open set condition (OSC) [Hut].
If the iteration process has overlap, the situation is more complicated and it has at-
tracted a lot of interest recently. The simplest IFS that has overlap is the maps
Szxz=pz, S x=px+1, x€R (1.2)

with 1/2<<p< 1. The invariant measure g, with weights 1/2 on each map is called the

Bernoulli convolution. It is the distribution of the sum Zp" X, where {X},-0” is a se-

n=0

quence of i.i.d. random variables taking values {0, 1} with probability 1/2 each. For the
special case of golden ratio p=( /5 —1)/2, we call z, the Erdos measure. There are ele-
gant results on the family of Bernoulli convolutions and they have inspired the development
of the fractal theory considerably. The reader can refer to [PSS] for a nice survey of the
development. But as a whole, the iteration by the maps in (1. 2) is still not completely un-
derstood. | '

In [LN2], Ngai and the author introduced a weak separation condition (WSC) on the
IFS of simililtudes. The condition is weaker than the OSC and includes many of the impor-
tant overlapping cases (see the examples in Section 3). In particular it includes the Erdos
measure (or more generally, the Bernoulli convolution with p™'a P. V., ﬁumbers). This
new condition also applies to the scaling function in wavelets (e. g. [D], [DL1],
[LWal). There are two basic questions concerning the self-similar measures:

1. The absolute continuity or singularity of .

2. The multifractal structure of .

For the first question, it is known that s is either continuously singular or absolutely
continuous with respect to the Lebesgue measure. By assuming the WSC, Ngai, Rao and
the author™ ™ gave a necessary and sufficient condition on the absolute continuity of g in

term of the weights w;. The condition is further extended to absolute continuity with re-

spect to the Hausdorff measures™".

The purpose of the paper is to report on some recent work on the second question un-
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der the WSC. The measures under consideration are necessarily singular (for the absolute-
ly continuous measure, one can consider the corresponding regularity property of- the
Radon-Nikodym derivative of x instead). The goal is to prove the multifractal formalism
of the dimension spectrum f (@) and the L?-spectrum 7 (g) (defined in Section 2). In
[LN2], the formalism was proved valid at the point where v(¢), ¢>>0, is differentiability
of 7(g). The main question is

3. Is v(g), ¢gER, differentiable? What about the multifractal formalism for g<C0?

From the definition, it is easy to show that z(g) is a concave function and hence dif-
ferentiable except for at most countably many points. In [LN1], Ngai and the author
studied the Erdos measure and obtained a formula for 7(q), ¢>>0; the formula implies the
differentiability of z(g), ¢ >0. The technique is to reduce the self-similar identity (1.1)
to a set of vector identities with a new “nonoverlapping” IFS [STZ]; the corresponding
probability weights are then reduced to a set of matrices. The formula was derived by us-

(F1) extended the formula to ¢<<0 and

ing the product of these special matrices. Later Feng
found that 7(g) has a non-differentiable point at ¢<C0. This is a striking result, neverthe-
less the multifractal formalism still holds [FO].

Another instructive example of WSC is the three—fold convolution g of the Cantor
measure. By using a matrix representation and applying a similar analysis as the previous

(%1 obtained a formula for v(g) with a non-differentiable point

case, Wang and the author
as for the Erdos measure. The more interesting results is that the set of local dimensions
has an isolated point (Hu and Lau™), it is in contrary to all the previously known cases
of IFS that this set should be an interval. The multifractal formalism has to be modified to
adjust for the isolated point [FLW]. In a detail study, Shmerkin® extended this example
considerably and gave a necessary and sufficient condition for the existence of isolated
points in the set of local dimensions.

The expression of a self-similar measure into product of matrices can be applied to a
large; class of IFS. Actually this approach has been used in the scaling functions in

wavelet theory (where the weights are real coefficients instead), and the product of the

matrices was used to study the existence of the L?-scaling functions and their regulari-

(L2l MY - Byurthermore Feng™ proved for the class of IFS on R satisfying afinite type

ty
condition (which implies WSC), the self-similar measure can be expressed as product of

matrices locally.
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The product of matrices in connection with the differentiability of r(q) was investi-
gates by Feng and the author™ in a more general setting. Let {M,,*+, My} be non-nega-
tive matrices. For J=(jis**» ju)» let |J| be the length of J and let M,= M M;,.

Let

P(@) = limLiog 37 1M, 17, (1.3)

[J{=n
where || My || =1M,1* where 1=[1,++, 1]. Under some conditions on the M,’s, they
showed that P(g), ¢>>0 is differentiable. For the special class of self-similar measures
satisfying the finite type condition, P(g) differs from 7(g) only by a factor, this implies
that 7(q), ¢>>0 is differentiable and by the result of [LN2]1, the multifractal formalism is
valid for ¢=>0.

In Section 2, we will first consider the contractive similitudes with the OSC and dis-
cuss certain background material and the well known results related to the dimensions. We
introduce the WSC and report some basic theorems in Section 3. The recent development -
of the finite type condition, the matrix representation of a self-similar measure, the prod-
uct of matrices and the multifractal formalism are discussed in Section 4. Finally in Section
5 and 6, we use the Erdos measure and the convolution of the Bernoulli convolutions as

concrete examples to explain the theory as well as the possible developments.
2 Preliminaries

Throughout we assume that {S;}L, is a finite family of contractive similitudes on R?,

i.e.
Sjx = piR;x + bjs
where 0<<p;<1, R;is an orthonormal matrix, and b;€R?. The invariant measure in (1. 1)
is called a self-similar measure. We say that {S,}_, satisfies the open set condition (0SC)
if there exists a bounded nonempty open set U such that
S;(U)CU and S:U)NS;WH =g, YiF]j
The “singularity” of a measure is studied through the various notions of dimension.

The most basic one is the local dimension of # at x defined as

logu(By(x))

Togh , x € suppp 2.1

a(x) = lim
ot

provided the limit exists where B,(x) is the ball centered at x with radius . This means
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that 2 (B, (x))ah" as h is sufficiently small. The local dimension is quite difficult to
handle in general. In the sequel we see that it is more fruitful to consider through the glob-
al dimensions of #. We define the Hausdorf{ dimension of x as

dimg () = inf {dimgE :#(R\E) = 0},
and the entropy dimension (also called the entropy) of M as

inf 2 (B, (z.))log (B, ()
logh

dim; (%) = lim

ot
where {B,(xz:)}:is a disjoint family of balls, and the infimum is taken over all such families
(assume 0 « co=0). The following theorem is well known [Y].

Theorem 2.1.  Suppose p is a probability measure on R® such that the local dimension
of x equals a for p-almost all x, then dimg (u) and dim,;(p) are both equal to .

For more detail of the relationship of these dimensions, the reader can refer to [N,
[Heu] and [FaL]. For the self-similar measure with the OSC, the « in the above theorem
is explicitFeHd: (M. I8,

Theorem 2. 2. Let p be a self-similar measure defined by {S;}}_1. Suppose {S;})-,
satisfies the OSC. Then for p-almost all x the local dimension of p is

N N
@, = Zw,-logw,-/ijlogp,-.
=1 J=1 .
Another important notion of the dimension of a measure is the L-scaling spectrum

(or Li-spectrum for short) 7(q). We define

log sup:{ >, #(By(z:))?}
logh

T(q) = h_m ] q E’ R. (2- 2)

h=ot

where the supremum is taken over all disjoint family of closed A-balls {B,(x;)}; with ;€
suppu. It is easy to show that r; R—[ —oo,o0) is an increasing concave function with
(1>=0. Note also that 7{0) is the lower box dimension of suppu, and formally dim, () is
7/ (1) when both limits exist.

For g==0 we can replace the packing of disjoint balls in the definition of 7(g) by the A-
mesh cubes {Q,(x;)}; that intersect suppg:

log >, #(Qu(z:))*
logh

, qg > 0.

t(g) = lim
[

The equality is false for g<C0, but it can be adjusted by replacing Q;(z;) with the new
cubes @, (z:), which are three times larger and have the same centers z,[R]. A more com-

plete analysis are given in [BGT] and [GT]. In [PS2], Peres and Solomyak proved.
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Proposition 2. 3.  Let p be a self-similar measure defined by the contractive simili-
tudes {S;}).1» then the limit in the definition of t(g)» g>>0, exists.

With the OSC on the {S;}}51, 7(g) has an explicit expression[cm.
Theorem 2.4.  Let u be a self-similar measure defined by the contractive similitudes

{S,}\, that satisfies the OSC. Then the Li-spectrum t(q) is given by

N
Siwip @ =1, g¢€R (2.3
j=1

To return to the local dimension a(z) defined in (2.1), we let K,={z:a(zx)=a} and let
f(a) = dimg K..
We call f(a) the dimension spectrum (also called the singularity spectrum) and refer to #
as a multifractal measure if f(a)70 for a continuum of a. This concept was first proposed
by the physicists to study various multifractal models arising from the consideration of tur-
bulence (e.g. » Mandelbrot™, Hentschel and Procaccia®™, Frisch and Parisi”"", Halsey
et al®™). In order to determine f(a), they proposed to use the L*-spectrum and the Leg-
endre transformation based on some physical intuition: The function t: R—~[—o0, o) is a
lower semi-continuousconcave function. We denote the effective domain of v by Dom 7=
{q: —oo<lr(g)<<oo}. The Legendre transformation (concave conjugate) of 7 is defined by
r* (@) = inflag —71(g): ¢ € R}.
If 7 is differentiable at g, then a=71'(g) and
t* (a) = 7 (¢)g — 7(g).

By using some heuristic arguments, the physicists[m]'[”ﬂ‘[m suggested that the followin
g g gg g

relationship holds

f(e) =" ().
It is called the multifractal formalism. In many respects, it is analogous to the well known
thermodynamic formalism™. The following proposition can be proved using the Vitali-
covering theorem (see e.g. » [Fal, [LN2D.

Proposition 2. 5.  Let ¢ be a probability measure and let T be the Li-spectrum , then
for a€ (Domz*)°, fla)<7" ().

However the reverse inequality is much harder to obtain. It depends on the IFS and so
far, no complete answer is in sight. The following is a complete answer for the contractive
similitudes satisfying the OSCI™ t-¥2,

Theorem 2. 6. Let u be an invariant measure defined by a contractive IFS {S iYeiof

similitudes with the OSC, then fla)=t"(a) for a€ (Domrt™)°.
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The proof makes used of the Birkhoff ergodic theorem and Theorem 2. 4. We see that

7(g) is differentiable and the derivative is

N
35 g gy
a(= a(g)) = 1'(g) = 5} y gER,
> dogpwipy @
=1

and f(a)=t" (a)——;aq—z‘(q). Note also that 7/ (1) is the «; in Theorem 2. 2.

3 The Weak Separation Condition

Our goal in this section is to relax the OSC to admit many important IFS with over-
laps. The main idea is to use points separation instead of the bounded open set in the
0OscC. ,

Let {S;}}., be contractive similitudes. For J=(j;,+* 7,0 1N, we let |J| denote
the length of J, S;=3§; +S; , ps=p;*p;. For r>0, we let

Fr=AJ = Grry j) s ST < pj, )
Note that S; may equal Sy even for J#J'. The following definition was given in [LN2J.

Definition 3.1. An IFS of contractive similitudes {S;}}_, is said to satisfy the weak
separation condition (WSC) if there exists z,€R%and a constant >0 such that for any r
>0 and for any J, J' € %,

‘either Sy(xy) = S, (xy) or |S;(x) — Syxy)| = ar. (3.1)

The definition says that in the iteration, if the Ss have (approximatively) the same
contracting ratio », then all tile states S, (x,) are either identical or separated by a distance
ar. It is easy to see that (3.1) is equivalent to:

either S7'S,(xy) =2, or |S;tS,(xy) — x| =a', VJ,J € F£. (3.2
In [BG] Bandt and Graf showed that {S;}I., satisfies the open set condition if and only if
there exists z, € RY and a>>0 such that |S;* S, (zo) — x| =4’ for all incomparable J and
J'. Tt follows that 7.

Propesition 3.2.  If {S;}\_, satisfies the OSC, then it satisfies the WSC.

The following are some useful equivalent conditions for the WSCHV! 4],

Proposition 3.3. Let {S;}}_, be contractive similitudes, then the following are equiva-
lent .

() {S;}]., satisfies the WSC;
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(ii) any ball B.(x) contains at most 1(L[2a71]Y) of the S.(xo)s

(iii) there exists Y>>0 with a compact subset DCR* and jL:J‘S ;(DYCD such that for any
>0 and zE R,
#{S € .z € ST,
where o, ={S; S=S;, JE F.}.
Example 3.1. Let {S;}), be defined on R such that S,-x=—ij (z+8&;) where k222 is
an integer, and b;=cr; with ¢ ER and r; rationals.
This is one of the most important class of IFS. The case £=2 has been studied in

great detail in wavelet theory. We will discuss this in Section 4. For =3, the most well

known case relates to the Cantor measure g where 6,=0, b, =2 which satisfies the OSC;

the three-fold convolution u corresponds to S;(x) =—é—(z+b,~) with =0, 2, 4, 6, this
IFS has the WSC but not the OSC. The multifractal structﬁre of p will be discussed in de-
tail in Section 6.

Ezample 3.2. Let {S;})_, be defined on R such that S;z=pz+b; where f=p"'is a
P.V. number G.e. , f>>1 is an algebraic integer such that all its algebraic conjugates have
modulus iess than 1), and b;=c r; with ¢€R and r; rationals. The WSC follows from a
lemma of Garsia ([G,Lemma 1.51], [LNRD.

Besides these standard examples where the contracting ratios are the same and are al-
gebraic numbers, we can also construct examples with more arbitrarily contracting ra-

tios [LNR], [LW2] .

Example 3.3. Let O<p<%, Six=px, Szx=pz+pand Syz=pxr+1, zER, then it
is easy to prove the WSC as in Example 3. 1. That S; ° S:(z)=3S; ° §,(x)=pz+p implies
that the OSC is not satisfied by the result of [BG] discussed before Proposition 3. 2.

Ezample 3. 4. Let

$,(z) =px, Sy@)=rz+pQ—r), Sy)=rz+A—1)
with 0<p<1,0<r<1 and p+2r —rp<1l. Then, with some work, {S;}%, satisfies the
WSC.

There are also interesting examples in R%.

Example 3.5. On R?, we let S;z=A(z+d;), j=1,» N where B=A"!is an inte-
gral expanding self-similar matrix, and d; € Z¢ with d;=0. The WSC is an easy conse-

quence of the definition.
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This class of IFS has been studied in detail in connection with the theory of tiles (as-
suming that N=det3) and also in the context of multivariate scaling functions.

Example 3. 6. Let A be the self-similar matrix as in Examples 3. 5. and let I" be a fi-
nite group of integral matrices ¥ withdetY=1:1-1 and satisfies ' A=A I'. Let Sjx=A,;(z+
d;) where A;=7; A,7;ET", d;EZ’. Then similar to the above example it is easy to show

that the IFS satisfies the WSC. For example let

1 1 € 0 0 [
A-1=|i :]a I'= ’ &=+ 1n
—']. 1 O 1) €y 0

1 —1 0 ,
That Slx=Ax,Szx=7Ax+[ :] with 7=[ :l generate an invariant set called the
- Lo 0 1

Lévydragon.

The following is a complete characterization of the absolute continuity (equivalently,
the singularity) of the self-similar measures under the assumption of WSC-V4,

Theorem. Let {S;}iL, be contractive similitudes satisfying the WSC. Let K be the
self-similar set with dimg K=a and let p be a self-similar measure defined by {S,-}f-;l.
Then p is singular with respect to $€° | if and only if there exists r=>0 and S € &, such
that ps*<ws where ws= > {w,: S, =S, S, € &, ).

The more difficult part of the proof is on the sufficiency, the main idea follows from
[LLNR] for the special case where p, = - = py and the absolute continuity is for the
Lebesgue measure. The theorem offers a very convenient criterion to check the singularity
(or absolute continuity ) of a self-similar measure under the WSC. In particular for a=d,
the theorem gives a nece ssary and sufficient condition for the absolute continuity with re-
spect to the Lebesgue measure.

For the WSC, there is no analogous formula for dimgK as is in the case of open set
condition (where the dimension is the « satisfies Zp;" = 1 5! However we have algo-
rithms to calculate the dimension™ 3" "%,

As ah important consequence of Theorem 1, we have

Corollary 3. 5. Under the above assumption, if the self-similar measure p is absolute-
Iy continuous with respect to F€° |k, then the Radon-Nikodym derivative of p is bounded.

We remark that in Theorem 1, the assumption that {Sj}f':, has WSC is essential. For

considering the Bernoulli convolution g, as defined in § 1, Peres and Solomyak™ proved

that if w € [%, %], then g, is absolutely continuous for almost all p€ [w* (1 —w)*™™,
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2/3

1]. Note that (%)1/3(%)2/3%0. 5291<—§—. Hence if we take p and w such that %—- Lp<w

=2/3, we see that there are g, absolutely continuous with respect to the Lebesgue mea-
sure. Theorem 1 does not apply to thesez,.

Furthermore, it was proved in [HLW] that if the {S;}, satisfies p;*<<wj; for some j
and p is absolutely continuous with respective to the Lebesgue measure (note that {S;}i,
cannot have WSC in view of Theorem 1, then the Radon-Nikodym derivative is unbound-
ed. Inparticular the above example of x, has unbounded derivative.

It is also interesting to know that if the self-similar measure 4 is absolutely continu-
ous with respect to S%° |k, then the two measures must be equivalent, disregarding
whether {S;})_, has the WSC or not ([HLW], [(MS]).

To conclude this section, we give a theorem on the multifractal formalism™*.

Theorem 3.6  Let {S;}}_, be contractive similitudes with the WSC and let p be a self-
similar measure. Suppose t(q) is differentiable at some q>>0, then for a=t'(q)

f(a); = dimy K, = t* (a).
The remaining question in the theorem is to show that 7(g),¢>>0 is differentiable. This
will be considered in the rest of the paper. We do not know whether the theorem is true

for g<<0. In the examples in Section 5,6, we see that there will be non-differentiable point

and other abnormalities.
4 Product of Matrices

In this section we will consider expressing the self-similar measures in terms of prod-
uct of matrices. First let us review an instructive case which has been studied thoroughly

in wavelet theory. Consider the following dilation equation
N
$(x) = >,c.$2z — ), z € R, (4.1)
F=0

where ¢, are real and Zc,, = 2. The compactly supported L'-solution ¢(x) is called a
scaling function. It is easy to see that formally, the scaling function ¢ in (4. 1) corre-
sponds to the Radon-Nikodym derivative of the self-similar measure #in (1.1) (except the

coefficient may be negative) and the IFS is

S,(z) = %(z 4+ 7Y, j=0,, N.
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Obviously this IFS satisfies the WSC but not the OSC when N>1. Note that the support
of $(z) is contained in [0, N—1] necessarily. We define a vector-valued function on [0,
1] by

$(x) = [$(x), $(x + 1), 8z + (N — DT
and let Mo=[czi_j-1 i<i.jen and M;=[csi—; i<i.j<n be the associated matrices of the coeffi-

cients {c,}s i.€.

€; € Co 0 c3 €3 ¢, = 0

MQ Cy Cy Cy A 0 ’ Ml

c; ¢4 ¢z 0O

LO:- 0 0 <0 Cnaqd L0 0 0 - cpl
Then (4. 1) is equivalent to the following equation

$(z) = Mo$pQ2x) + Mi$(2x — 1)
([DL1], [LWa]). In this case the corresponding IFS is TW(x)=x/2 , T,(x)=(z+1)/2
and satisfies the OSC. The matrix Ms-+ M has eigenvalue 2, let v be the left 2-eigenvec-

tor. For any J=(j1»***» j.)» ji=0or 1, we let

Ay =[D0/24 D0/ 2 + 1/24]
k=] k=1
and define

$.(x) = D> My« Xy, ().
{J=n

The ¢, is used to approximate ¢; the convergence of the sequence and the regularity of ¢

depend on the joint spectral radius™"!

o(My, M) = limsup( max | Mylelh )2

n—woo

and the p-mean spectral radius™" "

pp(Myy My) = Timsup—( >3 | Myls [12) ™"

|J|=n
where E is the (d—1)-dimensional subspace of R? orthogonal to (1,++,1) and M|z means

the restriction of the matrix M on E.

To put into our context, we let u(E) = f $ , then it is easy to see that
E

u(A, + i) = %I‘MJe

The other form of matrix representation was used by Strichartz et al®®™ and Ngai and
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Lau™ to study the Erdos measure. Recently it was generalized by Feng in EIFZ:I to-a
lager class of IFS.

Definition 4.1. Let S;(z)=pzx+b;, 0<p<1, b,ER, j=1,*+, N. {S;}},is said to
satisfy the finite type condition if there is a finite set I" such that for each integer >0,
and for any two indices J, J' of length =,

either 7" [S;(0) — S, (O] >¢ or p™|[S,(0) —S,(0)]| €T,
where c=(1—p)7! ax {bi— b;}.

This definition is a special case of the more general finite type condition defined by
Ngai and Y. Wang™" for similitudes on R?, and it implies the WSC™; Examples 3. 1-3,
3. 5-6 all satisfy the finite type condition. This condition yields a graph-directed set on the
indices. By some meticulous work on assigning the probability weights to the graph,

[F2) proved

Feng

Theorem 4. 2. Let {S;}}., be a co ntractive similitudes on R satisfying the finite type
condition, and let p be a self-similar measure. Then there exist families & ,y.n=1, 2, **
of closed intervals with disjoint interiors, and a set of non-negative square matrices M, ,+*,

M., such that
(i) each A€ F, is contained in exactly one N € F ,_;

(i) K= ﬂ(Uﬁf

(i) H; = ZMis irreducible, i.e. , there exists r=>0 such that H >0;

i=1
(iv) there is a one-to-one correspondence of the AE 5, and the admissible J = (ji***j,)

such that
p(B) =~ || My M, ||
We will consider the product of matrices in a more general setting. For a family of

non-negative d Xd matrices {M;,*+, M,}, we define the pressure function P(g) by

P(g). = 11m ——log Z I M0 e, q > 0. “4.1)

|J=n

The existence of the limit in the definition follows from a subadditive argument. The main

theorem is

Theorem 4.3. Let M,,++, M, be non-negative d Xd matrices such that H = ZM,- is
i=1

irreducible. Then the pressure function P(q) is differentiable for ¢=>0.

Combining Theorem 3. 6, Theorems 4. 2 and 4. 3, we have the following conclusion
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for the multifractal formalism.

Theorem 4.4. Let p be the self-similar measure as in Theorem 4.2, then t(g)=
P(q)/logp, g€ R. Consequently, t(q) is differentiable for q>0 and hence f(a)=1"(g), q
>0 for a=17'(g). ' |

In the following we give a sketch of the proof of Theorem 4. 3 together with some dis-

cussions. We need some standard notations: let S={1,+, m}", Z,={1,++, m}"and ="

="§12,.; for JE 3, let [J] denote the cylinder set with base J. We call a probability mea-
sure v a Young measure if for v-almost all € suppv the local dimensions a(x) exist and are
equal. In this case the local dimension equals dim,(v) (=dimg (v) (see Theorem 2.1). A
sufficient condition for v to be a Young measure is that v is ergodic. The follbwing differ-
entiability result is due to Heurteaux™.

Proposition 4. 5. Let v be a Young measure on 2. Suppose there exists a constant c>
0 such that

(1T < (I, VI,JeE =" (4.2)
Then 1,(q) is differentiable at 1.

The derivative 7,(1) is the entropy of v in Section 2. The proposition is a converse of
a theorem of Ngai™ where he proved that the existence of 7,(1) implies that v is a Young
measure.

The main objective is to use the matrices in Theorem 4. 3 to construct a measure v in
Proposition 4. 5. First we make use of Kolmogorov consistence theorem to define the mea-
sure

wW([JDh) =r2"Myv, JeEZ,
where A is the maximal eigenvalue of H, and u‘and v are the corresponding eigenvectors of
H and u'v=1. It is direct to show that A
WD =M, JESZ, (4.3)
and this implies that there exists C>>0 such that
v([1JD < Cu(I DI D, vI,Je >,
For gER, lets,(¢) = ZQ(EI])", where the summation is taken over all 1€ 2, with

Il=n
v([I])>0. By using the definition of
log s,(q)

—n

@)= w0 = m

and (4. 3), it is easy to see that
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@) = -(qlogd — P(@)), V¥ g>o.

ogm
Therefore to prove Theorem 4. 3, it suffices to prove 7(g) is differentiable. In order to ap-
ply Proposition 4.5, we need to find yet another v to have in addition the ergodic property

(it will be a Young measure). For this we make use of a technique of Brown, Michon and
Peyriere[BMP]. Let

v([J )"

sn(q) ? V J E 2:19

v (LJD =

let v, be a weak*-limit of the sequence, and let u='l'£r§%(u,,+uq o g7l ety 0 g7
where o is the natux;al shift operator on 3. We can show that v is ergodic and satisfies the
inequality in (4. 2), hence 7.(z) is differentiable for :>>0. To conclude that #;(g), >0 is
differentiable, we need to observe that
7,(¢) = 1;(qt) — tr;(q), g>0.

This completes the outline of the proof.

We remark that if we assume that the entries of M, are strictly positive, then the
above v is quasi-Bernoulli: there exists C>>0 such that

CW([IDHID < o([IJD) < CH[IDPHID VI,Je 3.

We can use the similar proof to show that P{q) is differentiable for ¢<C0 as well. In gener-
al we do not have a conclusion for g<C0. The examples in the next two sections show that
P(q) has non-differentiable points for ¢<C0.

In view of the case of scaling functions, it will also be interesting to know Theorem 4.
3 for the M, with negative entries. The reader can refer to [DL2], [LMW] for some spe-
cial cases on the scaling function related to the pressure function defined by (4. 1).

Our investigation can actually be set up more generally in dynamical systems. Let
(Z4, o) be a subshiftof finite type and let M(x) be a Holder continuous function on (X,
o) with values in the d Xd non-negative matrices. We define the pressure function as

T
@) = lim>log >

Jez,

sup | M(x)+-M(a" 2) || 7,

where 3,4, denotes the set of admissible indices of length » and [J] denotes the cylinder set

ei(r)

ofx € ZA . The pressure function of the scalar case (i.e. , M(z)= » where ¢(x) is a

real valued function called the potential of the subshift) has been studied in great detail in

statistical mechanics and dynamical systems in conjunction with the Gibbs measure, the

entropy and the variational principle™ ™), The investigation in [FL] is a natural exten-
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sion of the classical case to the matrix—valued dynamical systems.

5 Erdos Measure

The IFS S,z=pz, S;z=pz+ (1—p) with p=(+'5 —1)/2 satisfies the finite type

condition and Theorem 4. 4 holds. To construct the families of basic net intervals { &, }re;

and the matrices in Theorem 4. 2, it is more convenient to employ a technique of Strichartz

etal. [STZ] by reducing the overlapping of S;[0,1] and S,[0,1] into nonoverlapping

sets. Let

Tox = 815,z = p* z,

Tz = 3132321 = 8,88,z = p* z + ¢,

sz = SgSzx = PZI + P.

Then To[0,1]=[0,0%], T.[0,1]1=[p?,p],T.[0,1]1=[p,1] are three intervals with dis-

joint interiors. In terms of these maps, the self-similar identity (1.1) is reduced to three

sets of second order identities; For AC[0,1],

#(T,TA) #(Ty A7
/l(Tl T,' A) = M,' /‘(Tl A)
#(Tz T, A) pu(Ty A)J
where
r1 7 r 1 N
4 0 0 0 4 0
= |1 1 = 1
M, = 8 1 0f, M =10 1 0
1 1
i 0 5 0_ _0 1 O_

-

i=0, 19

and M, =

2,

0

1
2
1
4

0

(5.1)

OT

1
< |
L
4

.J

The identities (5.1) enables us to obtain the families of intervals {& ,}.=, in Theorem 4.

2; by Theorem 4. 4, (g)=P(q) /logp.

For the explicit formula of 7(g), we can use recursive substitutions to express the

product in terms of M, and M, and simplified: for any integer 2220, let J={(j1,***» ) ji

=0 or 2,

1

1 1
'4—[071a0]MJ 1 ='2‘27'.;3" Pl

1
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where

11 ' 1 07
P, = [: ] and P, = l: :|
0 1 1 1
The following theorem was proved in [LN1] for ¢>>0 and in [F1] for ¢<<0.

Theorem 5.1.  Let qo(=~=—2. 25) be the root of Z Z TP, =1.

=0 [J]=k
(i) For q=q,, t(q) is given by a, the root of

oo

ZP—(zHa)a( 2(;3) = 1. 6.2)

=0 [7T=4

(i) For g<<qo» t(g) =ay,.

This is a more complicated formula in corﬁparison with (2. 3) for the OSC. It follows
that v(g) is differentiable except at q.; it is linear for g<{qo. By Theorem 4.4, the multi-
fractal formalism holds for ¢>>0. For g€ R, Feng and Olivier [FO] proved a general theo-
rem that the formalism holds for the weak Gibbs measures . ( In terms of the symbolic

space (X, o) with a shift ¢, ¢ is a weak Gibbs measure means for any w= (ji; jys+*) €5,

1 < I"‘([jl’":9 jn—l]) <K(n),
K(”) n—1
exp(— >, $(c*w))
k=0

where ¢ is a non-negative function (potential) on 3 and li:nlogK(n)/n==O. ) The following
settles the problem of multifractal formalism for the Erdos measure.

Theorem 5.2. The Erdos measure is a weak Gibbs measure and f(a)=1" (a) for all a
€dom (zr*).

For the case that ¢ i5 a nonnegative integer, we have algorithm to calculate r(g) effi-
ciently:

Theorem 5.3. For gEN, ¢==2, (5.2) can be reduced to a polynomial equation P(z)
=0 (with 2=20"). In this case, t(q) =log(2/2?) /logp, where z is the largest positive root
of P.

- By Theorem 5. 2, we also conclude that

Theorem 5.4.  The entropy dimension

. 1 < "
dim,(p) = 7' (1) = QIOgPZ;MZ:;. c,loge, (== 0. 9957).

There is also of interest to consider the more general Bernoulli convolution where the
o tis a P. V. number. If the IFS satisfies the finite type condition, the multifractal for-

malism still hold for g>0 according to Theorem 4. 4 , However the above simple second
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order identity does not work and the implementation of Theorem 4. 3 is more difficult, and

we do not have a clear understanding for ¢<C0.
6 Convolution of Cantor Measure

Let v be the standard Cantor measure, then v is generated by the two maps

Si(@) = (2 + 2055 = 0,1

with weights % on each S;. Its N-thconvolution u=v % **+ % v is generated by
Si(x) = —:13-(3: + 27,

1 (N
with weights =y

2
sion, namely, log2 /log3. For u=v % v, the IFS {S;}%, satisfies the open set condition,

] s j=0, 1,++, N. It is well known that v has only one local dimen-

there is an explicit formula for the L%spectrum (Theorem 2. 4)

log

14, 1
2007 + (3 >q)
log3

(g) =

and the multifractal formalism holds. For the N-fold convolution, N>=3, the IFS {S,}),

satisfies the WSC but not the OSC. We consider the case N=3 in particular. Let

3
pC) = D p; (3 — 2. (6.1)
j=0 .

For the three fold-convolution py, p1, p2, p3=~£1;—,%, %, —213— respectively. By using the

technique of the dilétion equation in Section 4, we can express g into a vector-valued mea-
sure uonR:
#(A N [0,1]1)
uA) = [p((A N[0, +1) |,
w( (AN Lo, 1D +2)
for any Borel subset ACR. It is direct. to check that suppuC[0,1] and (6. 1) is equivalent
to

2 .
H(A) = > Tu3A — ), - (6. 2)
j=0

7

where -



306 Analysis in Theory and Applications 19:4, 2003

po 0 0 0 po O 21 0 po
To=10 p 0|, Th=|p. O pi|» To=|0 po O
ps 0 P 0 p O 0 0 ps

Let J be the interval [Z 374 23”* it 3_"](: [0,1] , then
k=1 k=1
u(J + i) = eT,a, i=0,1,2, (6.3)
where a=p([0,1]) =[a0,a;,a:] » and ¢;is the unit vector in R3 whose (i+1)-th coordinate
is 1. Tt can be proved that

2
logz Z (e T, 1)

1 i=0 |J|=n ‘
) = 1‘}2 — nlog3 ' : (6. 4)

Let so=p,"+p.%» and for n==1,

Su: =5,(q) = Z [[Pz’ Pl Py EO:H H

Jelo.2"?

b,: =b,(q) = Z ([pzspr]1 Ps1)".

Jeio.2)" !

o O P11 Po
P, = ’ P,= .
3 P2 ‘ 0 ps
Let ul® = Z(e;TJl)", n€EN,i=1,2, 3. Then

|J]|=n

with

2 |
>S1>5 €, P = + u® +

i=0 |J|=n

and

n—1
ut(xZ) = Zsk Upn—1)—1 + bn’ n > 1-
k=0
The last equation is the well known renewal equation and we can determine the growth

rate of u,?;

lim @)V = r?,

n—+oo

where Es; 7+ = 1. Also it is not hard to show that
. k=0

n
@) R h—
un‘ <C Zpiq Up—ky = 0, 3.
k=0

By using these we have

k=0

Theorem 6.1. Let r:=r(q) be the unique solution such that Zs;, 1 = 1. Then the



Lau Ka-sing: Multifractal Structure and Product of Matrices ‘ 307

L-spectrum t(q) of p in (6.4) is given by

(q) = @min{— qlogpe, — qlogps,logrig)}, qE€R

and t(q)=logr(q) /log3 if ¢>0.
It is seen that 7(g) may have non-differentiable points, and indeed it happens in the .
case of 3-fold convolution of the Cantor measure. In this case the weight is [po, 1 P2 p3]

_rl 3 3 1
=[5> 5> g gland

1 0 3 1
s
_ 1 }3 0 1

Theorem 6..2. Let p be the 3-fold convolution of the Cantor measure. Let r(q) be the
root of

3§ 2 S | Py 7] = 1

{Jt=n

and let qo(==—1. 149) be such that r(q,)=2%. Then
logr(g)/log3, if ¢ =4,
(q) = ]
3qlog2/log3, if ¢ < go.
The more striking phenomenon for the convolution of the Cantor measure, is the exis-

tence of an isolation point on the set of local dimensions E = {a: a(s) =a for some s €

suppy}.
Theorem 6.3. . Let p be the N-fold convolution of the Cantor measure (NZ==3). Then
a=sup {a (s): sEsupp #}=Nlé—253—2 is an isolated point of E.

For the case N=3, the result can be made more precise.

Theorem 6.4.  Let u be the 3-fold convolution of the Cantor measure. Then

(i) a=sup {a (s); sesupp,u}=%ogggz%1. 89278;
. : _3log2 .
a=inf{a(s): sesuppﬂ}f- logz — 1~0- 89278. |
iy ~ — ., ~_3log2 logb 7+ Y/13
Gi) E=[a, a]U {a} with a——————logs 210g3~1' 1335, where b= 5

The proof of the theorem is combinatoric [HL]. It depends on some careful counting

of the multiple representation s = Z 37z, ;= 0,, Nior s&suppsu. Since we can set
=1 ,

up the measure locally in the matrix form as in (6. 3), we can also make use of this to

prove the above theorem [FLW].
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In order for the multifractal formalism to hold, f(a) must be a concave function, so
that the domain E must be an interval. This is true for all self-similar measures generated
by the IFS satisfying the OSC. Theorem 6. 3 implies that the multifractal formalism fails
at a. Nevertheless, we see that the isolated point a in E comes from the two end points in
the suppo.rt of the measure. If we exclude these two points, we have [FLW].

Theorem 6. 5.  Let u be as in Theorem 6. 2. and let u be the measure restricted on KC
(05 3). Then

Ji(e) =" (a), a € (a, a*),

Recently Shmerkin [S] consider the more general case: S,—(x)=%(x+bj) where %, &;

€N, j=1,+N with weights {po,***; pny}. He extended the two theorems to the case N<
2k—2. Moreover he proved that, in the above notation

log(max || M, || )

a = limsup alogh

( limsup(rﬁa_x | M, || V") is the spectral radius of {My,+, M,}) and

. {log(max | M, 1l ) }
a* = inf ] =n .
" nlogk

This gives a more complete answer to the problem.
Acknowledgement  The author likes to thank Professor S. M. Ngai an Mr. Q. Deng

for reading the manuscript and suggested some . improvements.
References

[BG] Bandt, C. and Graf, S., Self-similar Sets 7, Proc. Amer. Math. Soc. , 114 (1992), 995—
1001.

[BGT] Bararoux, J., Germinet, F. and Tcheremchantsev, S., Generalized Fractal Dimensions: E-
quivalences and Basic Properties, J. Math. Pures Appl., (2001), 977—1012.

[BMP] Brown, G., Michon, G. and Peyriere, J. , Multifractal Analysis of Measures, J. Statist.
Phys. , 66(1992), 775—790.

[CM] Cawley, R. and Mauldin, R. D. , Multifractal Decompositions of Moran Fractals, Advances
in Math. , 92 (1992), 196—236.
D] Daubechies, 1., Ten lectures on wavelets, CBMS-NSF Regional Series Conf. in Appl.

Math. , SIAM, Phil. 1992.
[DL1] Daubechies, 1. and Lagarias, J. , Two-Scale Difference Equations II. Local Regularity, Infi-
nite Products of Matrices and Fractals, SIAM J. Math. Anal., 23(1992), 1031—1079.



Lau Ka-sing: Multifractal Structure and Product of Matrices 309

[DL2]

(EM]

[Fa]

{FLN]

[FLR]

[F1]

[F2]

[FL]

[FLW]

[FO]

[FP]

(G]

(¢T3

[GH]

(HI]

[HLR]

[Heu]

[HP]

Daubechies, I. and Lagarias, J., Thermodynamic Formalism for Multifractal Fuﬁctions,
Rev. Math. Phys., 6(1994), 1033—1070.

Edgar, G. and Mauldin, R., Multifractal Decompositions of Digraph Recursive Fractals,
Proc. London Math. Soc. ,» 65 (1992), 604—628.

Falconer, K., Fractal Geometry —Mathematical Foundation and Applications, John Wiley,
New York, 1990.

Fan, A., Lau, K.S. and Ngai, S. M., iéerated Function Systems with Overlaps, Asian J.
Math. , 4 (2000, 527—552.

Fan, A., Lau, K. S. and Rao, H., Relationships Between Different Dimensions of a Mea-
sure, Monatsh. Math. , 135(2002), 191—201.

Feng, D.J., The Limit Rademacher Functions and Bernoulli Convolutions Associated with
Pisot Numbers I, preprint.

Feng, D. J., The Smoothness of L?-Spectrum of Self-Similar Measures with Overlaps,
preprint.

Feng, D.J. and Lau, K.S., The Pressure Function for Products of Non-Negative Matrices,
Math. Research Letters, 9(2002),363—378.

Feng, D.J., Lau, K. S. and Wang, X. Y., Some Eexceptional Phenomena in Multifractal
Formalism: Part II, Preprint.

Feng, D.]. and Olivier, E., Multifractal Analysis of the Weak Gibbs Measures and Phase
Transition-Application to Some Bernoulli Convolutions, Ergod. Th. Dynam. Syst., to ap-
pear.

Frisch, U. and Parisi, G. , On the Singularity Structure of Fully Developed Turbulence,
Proc. Int. Sch. Phys., “Enrico Fermi’ Course LXXXVIII, North Holland, Amsterdam,
(1985) 84—88.

Garsia, A., Arithmetic Properties of Bernoulli Convolutions, Trans. Amer. Math. Soc.,
102 (1962), 409—432.

Germinet, F. and Tcheremchantsev, S. , Generalized Fractal Dimensions on the Negative Ax-
is for Compactly Supported Measures, preprint. o

Geronimo, J. and Hardin, D. , An Exact Formula for the Measure Dimension Associated with
a Class of Piecewise Linear Maps, Constr. Approx., 5 (1989), 89—98.

Halsey, T., Jensen, M., Kadanoff, L., Procaccia, I. and Shraiman, B., Fractal Measures
and Their Singularities: The Characterization of Strange Sets, Phys. Rev. A, 33 (1986), ‘
1141—1151. »

He, X.G., Lau, K. S. and Rao, H., Self-Affine Sets and Graph— Directed Systems, Con-
str. Approx. , to appear.

Heurteaux, Y., Estimations de la Dimension Inférieure et dela Dimension Supérieure Des
Mesures, Ann. Inst. H. Poincaré Prob. Stat., 34(1998), 309—338.

Hentschel, H. and Procaccia, 1. , The Infinite Number of Generalized Dimensions of Fractals

and Strange Attractors, Physica, 80 (1983), 435—444.




310

Analysis in Theory and Applications 19:4, 2003

[Hu]
[HL]
[HLW]
[Hut]
» 7]
(L1l
[L2]
[(LM]
[LMW]
[LN1]
[LN2]
[LN3]
[LN4]
[LNR]
(LW1]
[Lw2]
[LWal]
[M]
(ms]
(N]

INW]

Hu, T., The Local Dimensions of the Bernoulli Convolution Associated with the Golden
Number, Tran. Amer. Math. Soc. 349 (1997, 2917—2940.

Hu, T. and Lau, K.S. , Multifractal Structure of Convolution of the Cantor Measure, Adv.
in Appl. Math. , 27(2001), 1—16.

Hu, T., Lau, K.S. and Wang, X. Y., On the Absolute Continuity of a Class of Invariant
Measures, Proc. AMS. , 130(2001), 759—767.

Hutchinson, J. , Fractal and Self-Similarity, Indiana Univ. Math. J., 30 (1981), 713—747.
Jia, R., Subdivision Schemes in L*-Spaces, Adv. Comp. Math. , 3(1995), 309—341.

Lau, K.S. , Fractal Measures and Mean p-Variations, J. Funct. Anal., 108 (1992, 427—
457. ,

Lau, K.S. , Dimension of a Family of Singular Bernoulli Convolutions, J. Funct. Anal., 116
(1993) 335—358.

Lau, K.S. and Ma, M. F., The Regularity of L? —Scaling Functions, Asian J. Math., 2
(1997), 272—292. _ _

Lau, K.S., Ma, M.F. and Wang, J. » On Some Sharp Regularity of L?-Scaling Functions,
SIAM J. Math. Anal., 27 (1996), 835—864.

Lau, K.S. and Ngai, S. M. , The L*-Dimension of the Bernoulli Convolution Associated with
the Golden Ratio, Studia Math. , 131 (1998), 225—251.

Lau, K.S. and Ngai, S. M. , Multifractal Measure and a Weak Separation Condition, Adv. in
Math. , 141 (1999), 45—96.

Lau, K.S. and Ngai, S.M. , L*-Spectrum of the Bernoulli Convolutions Associated with the
P. V. Numbers, Osaka J. Math., 36(1999), 993—1010.

Lau, K. S. and Nga'i, S. M., Second Order Self-Similar Identities and Multifractal Decom-
positons, Indiana U. Math. J., 49(2000), 925—972. .

Lau, K.S. Ngai, S. M. and Rao, H. , Iterated Function Systems with Overlaps and Self-Sim-
ilar Measures, J. London Math. Soc., 63(2001), 99—116.

Lau, K.S. and Wang, X. Y., Iterated Function Systems with the Weak Separéltion Condi-

tion, preprint.

Lau, K.S. and Wang, X. Y., Some Exceptional Phenomena in Multifractal Fomalism: Part
I, preprint.

Lau, K. S. and Wang, J. , Characterization of L”-Solutions for Two-Scale Dilation Equations,
SIAM J. Math. Anal., 26 (1995), 1018—1046.

Mandelbrot, B., Intermittent Turbulence in Self-Similar Cascades: Divergence of High Mo-
ments and Dimension of the Carrier, J. Fluid Mech. 62 (1974), 331—358.

Mauldin, D. and Simon, K. , The Equivalence of Some Bernoulli Convolutions and Self-Simi-
lar Measures, Proc. AMS. , 126 (1998), 2733—2736.

Ngai, S.M. , A Dimension Result Arising From the L*-Spectrum of a Measure, Proc. Amer.
Math. Soc. 125 (1997), 2943—2951.

Ngai, S. M. and Wang, Y. , Hausdorff Dimension of Self-Similar Sets with Overlaps, J. Lon-
don Math. Soc. , 63(2001), 655—672.



Lau Ka-sing : Multifractal Structure and Product of Matrices 311

[Ngl
[psi]
(ps2]
[PSS]
(P]
[R]

[Ru]

[RW]
(s]
[Sgl
[sTZ]
Y]

(z]

Nguyen, N., Iterated Function Systems of Finite Type and the Weak Separation Property,
Proc. AMS. , 130(2002), 483—487.

Peres, Y. and Solomyak, B., Absolute Continuity of Bernoulli Convolutions, a Simple
Proof, Math. Research Letter, 3 (1996), 231—239.

Peres, Y. and Solomyak, B., Existence of L Dimensions and Entropy Dimension for Self-
Conformal Measures, Indiana U. Mathematics Journal, 49(2000), 1603—1621.

Peres, Y, , Schlag, W. and Solomyak, B., Sixty Years of Bernoulli Convolutions, Fractal

Geometry and Stochastics, II (Greifswald/Koserow, 1998), 39 — 65, Prog. Prob., 46,

Birhaauser, 2002. v

Pesin, Y., Dimension Theory in Dynamical Systems, Chicago, 1997.

Riedi, R. , An Improved Multifractal Formalism and Self-Similar Measures, J; Math. Anal.
Appl. , 189 (1995), 462-—490.

Ruelle, D. , “Thermodynamic Formalism: The Mathematical Structures of Classical Equilibri-
um Statistical Mechanics”, Encyclopedia Math. Appl. , Vol. 5, Addison-Wesley, Reading,
MA, 1978.

Rao, H. and Wen, Z. Y., Some Studies of Class of Self-Similar Fractals with Overlap Struc-
ture, Adv. Applied Math., 20 (1998), 50-72.

Shmerkin, P., A modified Multifractal Formalism for a Class of Self-Similar Measures with
Overlap, Preprint.

Strichartz, R., Self-Similar Measures and Their Fourier Transforms I, Indiana University
Math. J., 39 (1990), 797—817. )

Strichartz, R. , Taylor, A. and Zhang, T., Densities of Self-Similar Measures on the Line,
Experimental Math. , 4 (1995), 101—128."

Young, L. S., Dimension, Entropy and Lyapunov Exponents, Ergod. Th.  and:Dynam.
Sys. » 2 (1982), 109—124.

Zerner, M., Weak Separation Properties for Self-Similar Sets, Proc. AMS., 124 (1996),
3529—3539.

Lau Ka-sing

Department of Mathematics

Chinese University of Hong Kong

Hong Kong
e-mail ; kslau@math. cuhk. edu. hk




